Vascular endothelial growth factor induces manganese-superoxide dismutase expression in endothelial cells by a Rac1-regulated NADPH oxidase-dependent mechanism.
نویسندگان
چکیده
Vascular endothelial growth factor (VEGF) is a potent vascular endothelial cell-specific mitogen that modulates endothelial cell function. In the present study, we show that VEGF induces manganese-superoxide dismutase (MnSOD) mRNA and protein in human coronary artery endothelial cells (HCAEC) and pulmonary artery endothelial cells. VEGF-mediated induction of MnSOD mRNA was inhibited by pretreatment with the NADPH oxidase inhibitors, diphenyleneiodonium (DPI), and 4-(2-aminoethyl)-benzenesulfonyl fluoride, but not with the nitric oxide synthase inhibitor L-NAME (N-monomethyl-L-arginine) or the xanthine oxidase inhibitor allopurinol. VEGF stimulation of MnSOD was also inhibited by adenoviral-mediated overexpression of catalase Cu, Zn-SOD and a dominant-negative form of the small GTPase component of NADPH oxidase Rac1 (Rac1N17). Treatment of HCAEC with VEGF resulted in a transient increase in ROS production at 20 min, as measured by 2,7-dichlorodihydrofluorescein oxidation. This effect was abrogated by expression of Rac1N17. Taken together, these findings suggest that VEGF induces MnSOD by an NADPH oxidase-dependent mechanism and that VEGF signaling in the endothelium is coupled to the redox state of the cell.
منابع مشابه
Aldosterone Induces Oxidative Stress Via NADPH Oxidase and Downregulates the Endothelial NO Synthesase in Human Endothelial Cells
Aldosterone is traditionally viewed as a hormone regulating electrolyte and blood pressure homeostasis. Recent studies suggest that Aldo can cause microvascular damage, oxidative stress and endothelial dysfunction. However, its exact cellular mechanisms remain obscure. This study was undertaken to examine the effect of Aldo on superoxide production in human umbilical artery endothelial cel...
متن کاملSpironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells
Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...
متن کاملSpironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells
Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...
متن کاملEndothelium Normal IgG Downregulates the Intracellular Superoxide Level and Attenuates Migration and Permeability in Human Aortic Endothelial Cells Isolated From a Hypertensive Patient
The normal IgG, a circulating antibody, is maintained at a constant level in humans. However, little is known regarding whether normal IgG has effects on the function of vascular endothelial cells. The purpose of this study was to investigate whether IgG affects superoxide (O2 · ) generation and cell permeability in human aortic endothelial cells (HAECs) isolated from a hypertensive patient. Th...
متن کاملAnnexin Peptide Ac2-26 Suppresses TNFα-Induced Inflammatory Responses via Inhibition of Rac1-Dependent NADPH Oxidase in Human Endothelial Cells
The anti-inflammatory peptide annexin-1 binds to formyl peptide receptors (FPR) but little is known about its mechanism of action in the vasculature. Here we investigate the effect of annexin peptide Ac2-26 on NADPH oxidase activity induced by tumour necrosis factor alpha (TNFα) in human endothelial cells. Superoxide release and intracellular reactive oxygen species (ROS) production from NADPH ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- FASEB journal : official publication of the Federation of American Societies for Experimental Biology
دوره 15 13 شماره
صفحات -
تاریخ انتشار 2001